Tecnologia & inteligencia artificial
6 minutos min de leitura

O “veneno digital” da IA: quando poucos dados bastam para comprometer grandes decisões

Entenda como ataques silenciosos, como o ‘data poisoning’, podem comprometer sistemas de IA com apenas alguns dados contaminados - e por que a governança tecnológica precisa estar no centro das decisões de negócios.
CEO da A3Data, uma das principais consultorias especializadas em dados e inteligência artificial do Brasil, reconhecida como líder em IA Generativa pelo ISG. Atua com grandes organizações como Stellantis, Inter, M. Dias Branco, Mater Dei e Fleury. Acumula 14 anos de experiência no setor automotivo, na Fiat/Stellantis, em áreas de Planejamento e Estratégia de Produto, Marketing e Inteligência de Mercado, onde contribuiu para o desenvolvimento e posicionamento de produtos, estratégias de comunicação, pricing e apoio ao board da companhia. É formado em Engenharia Mecatrônica pela PUC Minas, com MBA em Marketing, especialização em Gestão de Negócios pela Fundação Dom Cabral e programas de Business Leadership pela Stanford Graduate School of Business e PDC pela Fundação Dom Cabral.

Compartilhar:

A Inteligência Artificial (IA) deixou de ser tendência para se tornar parte essencial da estratégia de negócios em praticamente todos os setores. De bancos a hospitais, passando por varejo, indústria e serviços, líderes estão acelerando investimentos em IA como um caminho para aumentar eficiência, reduzir custos e buscar novas formas de se relacionar com clientes.

Isso porque a IA deixou de ser um experimento de vanguarda para se tornar peça central nas estratégias corporativas. Segundo um levantamento global feito neste ano pela consultoria estratégica McKinsey, mais de três quartos das empresas já utilizam IA em pelo menos uma função de negócio, e a tendência é que essa adoção se expanda rapidamente nos próximos anos.

Nesse cenário, as organizações que não embarcarem nessa transformação tecnológica tendem a perder espaço competitivo em velocidade recorde.

No entanto, se por um lado a adoção cresce de forma acelerada, por outro a governança e a segurança da IA ainda não acompanham o mesmo ritmo. Diversos líderes têm priorizado a implementação da tecnologia em áreas de front office (setores que lidam diretamente com o cliente), inovação e atendimento ao usuário, mas relegado a segundo plano a discussão sobre os riscos envolvidos.

Contudo, é justamente nesse hiato entre velocidade e segurança que surgem ameaças como o ‘data poisoning’ (ou ‘envenenamento de dados’, em tradução livre), termo que se refere a um ataque sofisticado e silencioso que pode comprometer profundamente a confiabilidade dos modelos de IA.

O estudo recém-publicado “Poisoning Attacks on LLMs Require a Near-Constant Number of Poison Samples” (ou ‘Ataques de Envenenamento em LLMs Requerem um Número Quase Constante de Amostras Maliciosas’, em português), conduzido por pesquisadores da Universidade de Oxford, Anthropic, UK AI Security Institute, Alan Turing Institute e outras instituições, revelou uma descoberta surpreendente e preocupante: é possível manipular grandes modelos de linguagem (LLMs) com apenas algumas centenas de documentos contaminados, independentemente do tamanho do modelo ou do volume de dados em que ele foi treinado.

Além disso, foi identificado que esses ‘data poisoning’ podem passar despercebidos, funcionando como “atalhos escondidos”, pois, uma vez absorvidos pelo modelo, eles alteram o comportamento do sistema, podendo levá-lo a tomar decisões incorretas ou manipuladas.

Ao longo dessa pesquisa, foram testados modelos de diferentes portes, de 600 milhões até 13 bilhões de parâmetros. Em outras palavras, desde sistemas relativamente pequenos até alguns dos mais poderosos da atualidade.

A conclusão é que cerca de 250 documentos já são suficientes para inserir falhas ou comportamentos indesejados em um modelo. Antes, acreditava-se que seria necessário comprometer uma fração significativa do dataset, algo impraticável em escala real.

Desse modo, o estudo mostra uma vulnerabilidade e riscos bem maiores do que se imaginava, já que injetar falhas ou atalhos escondidos em sistemas de IA pode ser mais fácil e barato. Para os executivos, no entanto, esse tipo de ataque pode parecer distante, mas ele tem implicações práticas bastante claras. Se traduzirmos para o dia a dia corporativo, podemos trazer diversos exemplos bem tangíveis, como os destacados abaixo:

  • Imagine um chatbot de atendimento ao cliente que, por ter sido treinado com documentos manipulados, começa a autorizar reembolsos indevidos em larga escala. Com essa aplicação, o impacto financeiro é direto, mas também reputacional, pois rapidamente os clientes podem identificar a falha e explorá-la.
  • Pense em um sistema de análise de mercado que, a partir de dados contaminados, passa a recomendar investimentos incorretos ou enviesados, levando executivos a decisões estratégicas equivocadas. O prejuízo pode ir de uma alocação ruim de recursos até a perda de competitividade em setores inteiros.
  • Ou ainda, considere um modelo adquirido de um fornecedor externo que responde de forma maliciosa sempre que um termo específico é usado. Isso pode significar desde a exposição de informações sensíveis até respostas incorretas em situações críticas, afetando clientes, reguladores e parceiros.
  • Podemos imaginar até um sistema de RH baseado em IA sendo envenenado para favorecer perfis específicos de candidatos. As consequências vão além de prejuízos financeiros, pois incluem riscos legais, processos trabalhistas e danos de imagem ligados a discriminação e falta de transparência.


Esses exemplos fictícios ilustram como ataques invisíveis podem se traduzir em perdas financeiras, danos à reputação e até problemas regulatórios. E o mais preocupante é que basta um pequeno conjunto de dados maliciosos infiltrados para comprometer sistemas.

Vale destacar que os dados da McKinsey, citados logo no início do texto, mostram que as empresas que já aplicam IA em escala relatam ganhos expressivos de produtividade e receita, mas também são as que mais sentem os desafios de governança e risco. Isso reforça a urgência de tratar a segurança como parte indissociável da estratégia de Inteligência Artificial, e não como um detalhe técnico a ser resolvido no futuro.

Nesse sentido, o alerta sobre riscos como o ‘data poisoning’ não é isolado. Globalmente, governos e organismos reguladores vêm discutindo com intensidade o futuro da IA responsável. Na União Europeia, por exemplo, foi aprovado recentemente o AI Act, que estabelece regras específicas para segurança, transparência e uso ético de sistemas de IA. Já nos Estados Unidos, órgãos regulatórios publicam guias e recomendações.

No Brasil, tramita o Projeto de Lei 2.338/2023, que busca regulamentar o uso da Inteligência Artificial no país, classificando sistemas conforme níveis de risco e definindo responsabilidades jurídicas.

Esse movimento regulatório aponta para uma direção clara: assim como já acontece com temas como compliance, auditoria financeira e proteção de dados (LGPD), a governança de IA será pauta obrigatória em conselhos de administração e comitês executivos. Desse modo, a responsabilidade por falhas ou riscos em sistemas mal estruturados deixará de ser apenas uma questão técnica e será uma exigência direta para CEOs, CFOs e conselhos deliberativos.

Portanto, a pergunta que se impõe aos líderes não é apenas “como adotar IA”, mas “como adotar IA de modo seguro, transparente e alinhado à estratégia de longo prazo da empresa”.

Com isso, essa adoção é, sem dúvida, um caminho sem volta para empresas que desejam se manter competitivas, uma vez que os ganhos em produtividade, personalização e inovação são evidentes.

Porém, essa corrida não pode ser baseada apenas na estética ou em soluções mirabolantes que prometem resultados rápidos sem clareza do que ocorre nos bastidores. Confiar em fornecedores que dominam o tema de ponta a ponta, com práticas sólidas de governança e segurança é essencial para proteger a organização.

Para conselheiros e C-Levels, a mensagem é clara: as lideranças precisam olhar para a IA da mesma forma que enxergam outros pilares importantes do negócio, como algo que precisa de estratégia, monitoramento constante e gestão de riscos. Assim como ninguém contrataria uma auditoria financeira sem credibilidade, não faz sentido embarcar em projetos de IA que não ofereçam garantias mínimas de robustez e governança.

Em outras palavras, a IA abre portas extraordinárias, mas apenas para quem souber trilhar com segurança por esse caminho.

Compartilhar:

Artigos relacionados

Saúde mental, Gestão de pessoas, Estratégia
13 de agosto de 2025
Lideranças que ainda tratam o tema como secundário estão perdendo talentos, produtividade e reputação.

Tatiana Pimenta, CEO da Vittude

2 minutos min de leitura
Gestão de Pessoas, Carreira, Desenvolvimento pessoal, Estratégia
12 de agosto de 2025
O novo desenho do trabalho para organizações que buscam sustentabilidade, agilidade e inclusão geracional

Cris Sabbag - Sócia, COO e Principal Research da Talento Sênior

5 minutos min de leitura
Liderança, Gestão de Pessoas, Lifelong learning
11 de agosto de 2025
Liderar hoje exige mais do que estratégia - exige repertório. É preciso parar e refletir sobre o novo papel das lideranças em um mundo diverso, veloz e hiperconectado. O que você tem feito para acompanhar essa transformação?

Bruno Padredi

3 minutos min de leitura
Diversidade, Estratégia, Gestão de Pessoas
8 de agosto de 2025
Já parou pra pensar se a diversidade na sua empresa é prática ou só discurso? Ser uma empresa plural é mais do que levantar a bandeira da representatividade - é estratégia para inovar, crescer e transformar.

Natalia Ubilla

5 minutos min de leitura
ESG, Cultura organizacional, Inovação
6 de agosto de 2025
Inovar exige enxergar além do óbvio - e é aí que a diversidade se torna protagonista. A B&Partners.co transformou esse conceito em estratégia, conectando inclusão, cultura organizacional e metas globais e impactou 17 empresas da network!

Dilma Campos, Gisele Rosa e Gustavo Alonso Pereira

9 minutos min de leitura
Cultura organizacional, ESG, Gestão de pessoas, Liderança, Marketing
5 de agosto de 2025
No mundo corporativo, reputação se constrói com narrativas, mas se sustenta com integridade real - e é justamente aí que muitas empresas tropeçam. É o momento de encarar os dilemas éticos que atravessam culturas organizacionais, revelando os riscos de valores líquidos e o custo invisível da incoerência entre discurso e prática.

Cristiano Zanetta

6 minutos min de leitura
Inteligência artificial e gestão, Estratégia e Execução, Transformação Digital, Gestão de pessoas
29 de julho de 2025
Adotar IA deixou de ser uma aposta e se tornou urgência competitiva - mas transformar intenção em prática exige bem mais do que ambição.

Vitor Maciel

3 minutos min de leitura
Carreira, Aprendizado, Desenvolvimento pessoal, Lifelong learning, Pessoas, Sociedade
27 de julho de 2025
"Tudo parecia perfeito… até que deixou de ser."

Lilian Cruz

5 minutos min de leitura
Inteligência Artificial, Gestão de pessoas, Tecnologia e inovação
28 de julho de 2025
A ascensão dos conselheiros de IA levanta uma pergunta incômoda: quem de fato está tomando as decisões?

Marcelo Murilo

8 minutos min de leitura
Liderança, Cultura organizacional, Liderança
25 de julho de 2025
Está na hora de entender como o papel de CEO deixou de ser sinônimo de comando isolado para se tornar o epicentro de uma liderança adaptativa, colaborativa e guiada por propósito. A era do “chefão” dá lugar ao maestro estratégico que rege talentos diversos em um cenário de mudanças constantes.

Bruno Padredi

2 minutos min de leitura

Baixe agora mesmo a nossa nova edição!

Dossiê #169

TECNOLOGIAS MADE IN BRASIL

Não perdemos todos os bondes; saiba onde, como e por que temos grandes oportunidades de sucesso (se soubermos gerenciar)

Baixe agora mesmo a nossa nova edição!

Dossiê #169

TECNOLOGIAS MADE IN BRASIL

Não perdemos todos os bondes; saiba onde, como e por que temos grandes oportunidades de sucesso (se soubermos gerenciar)